
A - A93 532 D PT VE IDENTIF C TION 8¥ SYSTOLIC RR YS(U) N AVL 1/1

POSTGRADUATE SCHOOL MONTEREY CA P A WILLIS DEC 87

UNCLASIFIED F/G 12/4 NL/i/I/I/I/I///
IEIIIIIIIImI

IIIIIIIII

11111 111=01~H 1 --11111 A~ 13

MICROCOPY RESOLUTION TEST CHAR1
1W Al, TANOlARS 1963-A

Nf %

e h .f. % 1

%S

NAVAL POSTGRADUATE SCHOOLNP
uvwterey, CaliforniaI 2

A DTIC
SSELECTE

MAY 3 1198THESIS S

ADAPTIVE IDENTIFICATION
BY SYSTOLIC ARRAYS

by

Paul A. Willis

December 1987

Thesis Advisor Roberto Cristi

Approved for public release; distribution is unlimited.

lS

SECURITY CLASS-CAON OF - ZAGE

REPORT DOCUMENTATION PAGE . '-

I&. REPORT SECURITY CLASSIFiCATiON 1b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFiCATiON AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFKATION, DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

V 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 33 Naval Postgraduate School
6c. ADDRESS (City, Stare, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDING, SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bk. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classfication)

ADAPTIVE ID FICION BY SYSTOLIC ARRAYS
12. PERSONAL AUTHOR(S)
Willis, Paul A.

13.. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yeer, Month, Oay) IS PAGE COUNT
Master's Thesis FROM TO _ __ 1987 Dweetter T 68

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Systolic Arrays, Adaptive Identification, Parallel

Processing, Cordic Algorithm

19i ABSTRACT (Continue on reverse of necessary and identify by block number) -t J,

) This thesis is concerned with the implementation of an adaptive
identification algorithm using parallel processing and systolic arrays.
In particular, discrete samples of input and output data of a system
with uncertain characteristics are used to determine the parameters of
its model. The identification algorithm is based on recursive least
squares, QR decomposition, and block processing techniques with
covariance resetting. Along sirilar lines as previous approaches, the
identification process Is based on the use of Givens rotations. This
approach uses the Cordic technique for improved numerical efficiency in
performing the rotations. Additionally, floating point and fixed point
arithmetic implementations are compared.,

'II

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICAYION
gUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 DTIC USERS LNCIASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) :Ic OFFICE SYMBOL

Roberto Cristi (408) 646-2223 Code 62Cx

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete t .eia.u o t*-ee4.

)I

Approved for public release; distribution is unlimited.

Adaptive Identification
by Systolic Arrays

by
r

Paul A. Willis
Lieutenant, United States Navy

B.S.E.E., Purdue University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Author. q-

L a 4.-' s

Approved by: I =_]

Ro erto nrstu, Thesis Advisor

Sherif Michael. econd Reader

6 Vincent 77-Lm,MCairman,
epartme of Ccilputer Science

Gordon E. Schacher,
Dean of Science and Engineering

2

i)M , (-j-. et, O .r ,,v ,.w.. ,j _-o- , -,--,r - . ,,.7 . ,.'., ,,.-.w-o-. ' . ., . ,..-..- '_- .- .- -,-. -

ABSTRACT

This thesis is concerned with the implementation of an adaptive identification

algorithm using parallel processing and systolic arrays. In particular, discrete samples

o" input and output data of a system with uncertain characteristics are used to

determine the parameters of its model. The identification algorithm is based on

recursive least squares, QR decomposition, and block processing techniques with

covariance resetting. Along similar lines as previous approaches, the identification

process is based on the use of Givens rotations. This approach uses the Cordic p
technique for improved numerical efficiency in performing the rotations. Additionally,

floating point and fixed point arithmetic implementations are compared.

Acoessioni For
NTIS GRA&I
DTIC TAB F]
Uuim ou nced j
JUS If I a ___ .

Avatlabtlity Codes
.Avail -and/or . .,

Dist Specialfyi I

TABLE OF CONTENTS

I. INTRODUCTION.. 9
A. BACKGROUND....................................... 9
B. IMPLEMENTATION CONSIDERATIONS 10

11. SYSTEM IDENTIFICATION M*YETHODS 12
A. LINEAR SYSTEM MODELING 12
B. SOLUTION OF SYSTEMS OF LINEAR EQUATIONS 13
C. QR DECOMPOSITION 14
D. RECURSIVE LEAST SQUARES 16
E. BLOCK PROCESSING AND COVARIANCE

RESETTING... 17

Ill. SYSTOLIC ARRAY IMPLEMENTATION...................... 20
A. IMPLEMENTATION OF ALGORITHM................... 20
B. GIVENS ROTATION.................................. 20
C. CORDIC TECHNIQUE 23
D. SYSTOLIC ARRAYS.................................. 27

1. General .. 27
2. Triangular Array................................... 29
3. Linear Array 31
4. The Use of a Second Triangular Array as the Solution

Section .. 33

IV. SYSTOLIC ARRAY MODELING 38

A. GENERAL .. 38
1. System Equations................................... 38

2. Choice of Initial Values.............................. 38
3. Choice of Block Length..............................3 9

4. Fixed Point versus Floating Point 39
B. SYSTEMS WITHOUT NOISE 39

4I

1. Results Using Floating Point Arithmetic 4(),

2. Results Using Fixed Point Arithmetic 4.. 4

C. SYSTEM W ITH NOISE 44

I. Results Using Floating Point Arithmetic 45

2. Results Using Fixed Point Arithmetic 50

V. CON C LUSION S .. 59

APPENDIX: PROGRAM LISTING FOR SYSTOLIC ARRAY
SIM U LA TIO N .. 61

LIST OF REFERENCES .. 66

BIBLIOG RA PH Y ... 67

INITIAL DISTRIBUTION LIST ... 68

I.

,.

5

%5

LIST OF TABLES

I. THE BINARY CORDIC CONSTANTS 26

2. TIMES OF AVAILABILITY OF DATA 37

3. TIME TO CONVERGENCE (NOISELESS CASE) 44

4

..

.5'..

A'

S

LIST OF FIGURES

2.1 Sim ple Linear System ... 12

2.2 T im e L ine ... IS

3.1 Example of Row Operations .. 21

3.2 V ectors in A 2 ... 21
3.3 Example of Givens Rotations 22

3.4 General Block Diagram of CORDIC Computation 25

3.5 Set of CORDIC Rotations ... 26

3.6 Algorithm for CORDIC Rotations 27

3.7 Systolic A rray ... 28

3.8 Systolic Array Implementation for Parameter Estimation: Old Design 30
3.9 Definition of Cell Operations for Triangu,ar Section 31

3.10 Data Flow in Triangular Section 32

3.11 Definition of Cell Operations for Linear Section 33

3.12 Systolic Array Implementation for Parameter Estimation: New
D esign ... 34

3.13 Solution of System of Equations 35
3.14 Data Flow Through Second Triangular Array 36
4.1 Floating Point, Without Noise, N = 3 40

4.2 Floating Point, Without Noise, N = 5 41

4.3 Floating Point, W ithout Noise, N = 1 42

4.4 Floating Point, W ithout Noise, N = 15 43

4.5 Fixed Point, Without Noise, N = 3................................45

4.6 Fixed Point, W ithout Noise, N = 5 45
4.7 Fixed Point, W ithout Noise, N = 1 46"
4.7 Fixed Point, W ithout Noise, N = 5 46
4.8 Fixed Point, Without Noise, N = P n..... 47

4.9 Input and Output Signals Withot Noise ren 49
4.9b Input and Output Signals With Noise Present....................... 49

4.10 Floating Point, W ith Noise, N 3 51

7

'.A %A '.

4.11 Floating Point, W ith Noise, N = 5 52

4.12 Floating Point, W ith Noise, N = 10 53

4.13 Floating Point, W ith Noise, N = 15 54

4.14 Fixed Point, W ith Noise, N = 3 55

4.15 Fixed Point, W ith Noise, N = 5 56

4.16 Fixed Point, W ith Noise, N = 10 57

4.17 Fixed Point, W ith Noise, N = 15 58

8 4

. 0

1. INTRODUCTION

A. BACKGROUND
The problem of adaptively controlling systems with uncertain characteristics

depends largely on identification of the unknown system parameters. The ability to

accurately and quickly estimate these parameters, then, is of primary importance. The

state of computer development today has made this estimation possible in real time.

The goal of parameter estimation is to best fit an appropriate model to the input-

output data of the plant under investigation. This immediately leaves us with two

basic and distinct problems: the choice of a parameter model and the choice of an

estimation algorithm.

We desire to select a parameter model which relates input and output data by

means of weighted parameters, in the form

y(t) qr(t) 0 + v(t) (1.1)

TV
with y(t) and V)T(t) representing the output and signals respectively available for

measurements, and where 0 is an array of unknown parameters to be determined. The

term v(t) represents noise or other modeling errors. Though numerous choices of

model structures exist, linear models still remain the most desirable due to their
simplicity and the considerable amount of theory developed to analyze them.

Secondly, we need to choose an appropriate estimation algorithm. Again, several
possibilities exist, but the most effective in terms of converging is the recursive least

squares algorithm [Ref. 1: pp. 49-681. This algorithm is implementable using on line

matrix manipulations, and the technique is based upon on line solution of a system of

linear equations.
The major drawback of recursive least squares is the computational complexity

involved. The size of the matrices grows with the complexity of the system to be

modeled. Although available microprocessors are effective for low order systems and

slow sampling rates, more complex problem require improved capabilities. These

capabilities are provided by systolic arrays built using VLSI technology.

,J.

5

•I,S

This research analyzes the on line recursive least squares identification algorithm.

This algorithm processes blocks of data, using values gained from the previous block as

initializing values, in a method known as block processing. This block processing

technique is based on QR decomposition, discussed in the next chapter.

B. IMPLEMENTATION CONSIDERATIONS

The particular computing structure we are considering is based on the systolic

array (or wavefront array). The systolic array consists of an array of individual

processing cells, each provided with a local memory and processing unit of its own,

connected in such a way that each cell communicates only with its nearest neighbors.

The array is designed so that data is continuously clocked or pumped throughout in a

rhythmic fashion; hence the name "systolic." The cells are simple in that they are

required to perform only basic mathematical functions on the data received from

neighboring cells. Special purpose hardware incorporating systolic arrays can be built

using VLSI technology. The advantage with this technique is the fact that a complex

operation is performed by several processors at a time, thus increasing the throughput

of data.

Previous authors [Refs. 2,3: pp.29 - 37, pp.25 5 - 2741 have presented parameter

estimation algorithms using systolic arrays. The general idea has been to solve a

system of linear equations in two stages: first, by triangularization of the matrix of

coefficients, and second, solving by successive substitution. The previous algorithms

have all been similar in that they used a triangular systolic array to triangularize the

matrix, and a linear systolic array configuration to solve for the parameters. It turns
out that the arrays for the triangular and linear sections are different, and furthermore

the linear section requires operations such as divisions which are hardly implementable

by simple processor operations.

In this thesis we present an algorithm which is based on two identical triangular

sections. It is characterized by the fact that only orthogonal operations are involved,

thus making the algorithm numerically more stable, and easily implementable by simple
shift and add operations. Also, one of the advantages is that only two different types

of cells are necessary (as compared to four in the previous implementations), resulting

in a simplification in the manufacturing process. These cells perform different

functions from those used by the above referenced authors. The Cordic technique is

used by the cells to perform vector rotations, resulting in improved numerical

efficiency. Though more total cells are required in this implementation, the cost of

additional cells in a VLSI scheme is considered to be minimal.

10

The use of fixed point versus floating point arithmetic is considered during this
investigation. Because fixed point operations are based on simple shift functions and

finite registers, which are simple to implement, it seemed advantageous to use fixed
point values. However, since input and output data do not naturally appear as integer
values, there was concern over loss of accuracy due to necessary scaling and
truncation. With proper choice of scaling factors, it will be shown that the integer

methods perform as well as floating point.

This thesis is divided as follows: Chapter Il discusses the methods of system
identification, i.e. solution of systems of linear equations, QR decomposition, and
recursive least squares; Chapter III discusses the Cordic technique and the
implementation of the systolic arrays. Chapter IV discusses the simulation results, and
Chapter V draws the final conclusions. A listing of the program used to simulate the
systolic arrays is found in the appendix.

.4

.'

°5,

I l 1*-

11. SYSTEM IDENTIFICATION METHODS

A. LINEAR SYSTEM MODELING S.

The first step in any parameter identification process is to model the system in

mathematical terms. To this end, consider a general system with a single input u(t)

and single output y(t)., as shown in Figure 2.1.

u (t) system ()

Figure 2.1 Simple Linear System.

This system can be described by the linear, constant coefficient difference equation

y(t) + aly(t-1) + ... + any(t-n) - blu(t-I) + ... + bmu(t.m) + v(t) (2.1)

where the ai's and the bi's are real constants, and the equation (and system) is of nth

order. The v(t) term denotes a noise variable. Equation (2.1) represents a class of

discrete systems, known as recursive systems because the output depends not only on

the input but on the previous output values also.

An alternative way to represent the above equation is by defiming the parameter

vector as

T _ [a, a2, ... ,an, bb 2, ... ,bMI (2.2)

and the regression vector of input-output data as

T T (t) -y(t-l) . ,-y(t-n), u(t-l) . u(t-m) (2.3)

12

Now, using (2.2) and (2.3), we can rewrite (2.1) as

y(t) - pT(t)0 + v(t) (2.4)

The vector 0 contains the parameters which we want to determine. This can be
obtained by sampling the system at some sample frequency (say, ws) and accumulating

a numerical sequence that describes the system at discrete time intervals. We can

express this in the form of a system of linear equations by considering the sequence at

several instants of time. Ideally, if the number of samples of u(t) and y(t) (i.e. the

number of equations) equals the number of unknowns (m + n), we should be able to
solve exactly for 0. However, it is normally the case that the number of equations is

greater than the number of unknowns. This system may or may not have a solution.

Ideally, in the noiseless case (v(t) = 0) a solution exists, regardless of the number of

equations. However, since noise and numerical errors are present, we look for the least
squares solution of the system of equations, i.e. for the solution which minimizes the

error

C(0) = II AO - b 112 (2.5)

This always exists, although it might not be unique.

B. SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

In the previous section we saw how the linear system could be modeled by (2.4).
When numerous samples are taken, we end up with a system of linear equations, such

as

y(t) = ,pT(t) O + v(t)

y(t-l) = qT(t-l) 0 + v(t-1)

y(t-2) - pT(t-2) 0 + v(t-2)

This system of equations can be expressed in the form

A0= (2.6)

13

where Au a nm",0 • n e Am. Now, whenm- n, and A is full rank and

invertible, we can solve uniquely for 0 as

S- 'h (2.7)

However, in general we find that m > n (i.e. more equations than unknowns). In this

instance, the solution of(2.7) is defined in the least squares sense as

e s where IIAGs - 1l - min0 lA- k21 (2.8)

Although (2.8) can be solved by pseudoinverse, this technique is not attractive due to

the presence of matrix inversion. An alternative way is to triangularize A in (2.6) and

then solve for 0 by successive back substitutions. This, of course, is the basis of

Gaussian elimination techniques.

But now we face the dilemma of triangularizing an array when m > n. The

solution is to triangularize the upper part of the A matrix, leaving one or more rows of

zeros at the bottom as a result. This will permit us to solve for 0 in the least squares

sense, as indicated in (2.8). This is known as QR decomposition. (For review of least

squares estimation in statistical theory, the reader is referred to the literature.)

C. QR DECOMPOSITION

A means to solve for the least-squares solution of a system of linear equations is

provided by the QR decomposition of a matrix [Ref. 4: pp. 209-215]. Consider again

Equation (2.6) with m > n, where 0 - 0 (i.e. least squares sense). We can factor the

m x n matrix A as

A - Qf (2.9)

where Q is a m x n orthogonal matrix such that QQT I, and f is defined as

1 (2.10)

0

14

where R is an n x n upper triangular matrix, and 0 represents a zero matrix. Now we

can rewrite (2.6) as

0 = QTb = 11)

0 - #

And finaly, from (2.11), it follows that

RO = P, (2.12)

Now, the solution of (2.6) in the least squares sense is the same as the solution of

n equations and n unknowns in (2.12).

Proof. Consider the set of equations

e,- AO-1t=-QR- b

where e represents the least squares error vector. Then,

eTe- (bT OTAT) (AO -]2)
QTe = RO- QTb - Re- P

Then, we have

eTe eTQQT IIRO -P 112

- II -IP2 U2

- II Re _ pi 112 + 11 P2 112

We see that P2 is independent of 0. Therefore, Ile112 is minimized when

0IS R'1p3 or RO,, - P

15

!I

Based upon these results, we see that we can now solve (2.12) for 0 by back

substitution.

There are a number of methods available that can be used to compute the upper

triangular matrix R. In particular, the Givens rotation JRef 5: pp. 497 - 4991 is

attractive for systolic array implementation since it is based on manipulation of pairs

of adjacent rows, thus requiring minimum broadcasting of data. Cordic techniques are

used to implement these rotations, and are discussed in the next chapter.

D. RECURSIVE LEAST SQUARES

The problem now is to determine a recursive algorithm that can be used to

estimate the parameter 0 in the model

y(t) = ,T(t)0 (2.13)

We desire to estimate 0 from a set of measured data y(t) and (p(t). In the least squares

sense we choose this estimate by best fitting our model to the available data. That is,

we wish to minimize c, where

I1 - ly(t) - ,(T(t) 01 (2.14)
A A

Orefersto the estimate of O at any time t. In particular Ot satisfies the equations

= ATt)U _ y) t...1) (2.15)

-T (0) y(o)
A

It is possible to- show that Ot can be recursively computed as [Ref. 6: pp. 17 - 22]

A M + P(t.1) (t) (y(t) - q T t)) (2.16)
t+ t 1 + (P (t)P(t-1) Pt)

where P(t) - (A(t)TA(t)) " satisfies the recursion

P~t)- Pt-l . ~t-) f(t) ,VT(t) (2t-17)
P~t) Pt-I) Pt-l) I + (PT(t) P(t-l1) (tt) (.7

16

-- - - - -

To this point, we have ignored the problem of the existence of the solution. If

A(t) is singular, then P(t) does not exist. Furthermore, we can not initialize A(.l) I 0

because this would leave P(-l) undefined. The solution is to incorporate initial

conditions into A(t) so that P(t) can be computed at each t. Choose A(-I) - 601,

where vo > 0 is some arbitrary constant, and I is the identity matrix of appropriate

dimensions. Then, by algebraic manipulation, Equation (2.15) becomes

ST(t-l))-(t-)

(2.18)
0 7 () ' t - Y (O)

A(-1) A(-1) 0

The solution to (2.18) can be made fully recursive using (2.16) and (2.17) and

appropriate initial conditions.

E. BLOCK PROCESSING AND COVARIANCE RESETTING
In the previous section, an algorithm was described that allows us to estimate the

parameter 0 recursively. However, note that from the definition of P(t) (also known as

the covariance matrix)
,t

P(t) - (AT(t) A(t))-' - (o I + (i) T(i)-1 (2.19)

that P(t) -o 0 as t -# 00 [Ref 6: p. 211. Therefore, the algorithm loses sensitivity as t

increases, and later values of 0 may not be as accurate as earlier values, especially if

our model changes with time. There are two possible remedies to this problem: the use

of a 'forgetting factor, or the block processing approach.

The forgetting factor minimizes the error

%t()k .(I + 0 0- 1 (2.20)
k-0

where 0< X <1 is the forgetting factor. This has the effect of assigning a higher weight

to more recent data.

-- *r'" v - - i t i i : * * % % %* * .. . , - _ 11 - --] V i-- i %
l

- %* l

The block processing approach, on the other hand, divides the time set into
segments of equal and fixed length N as in Figure 2.2. At the end of each time

kN (k+l)N

Figure 2.2 Time Line.

block, we reset the covariance matrix P(t). Although it can be reset at any time, for
convenience we choose the end of each block, and P(t) now becomes

P(t)0" 1 t - kN-I1(-1{=Equation (2.17) otherwise

Therefore, the beginning of each time block is treated as a new, initialized period.

It has been shown [Ref. 2: p. 201 that an external input u(t), sufficiently rich in
frequency (n sinusoids), together with blocks Ik of sufficient length N provide a
guarantee for an estimation 0 .-.0 where 0 represents actual parameters. The effect
of various lengths of N will be investigated later.

If we apply the considerations above to the general case, we can see that the

parameter estimates at the end of each time block are given by

0 T((k)N- 1) y((k +I)N- 1)

oT(kN) = y(iN) (2.22)

60! ffOkN

This will be the foundation with which we build our recursive parallel algorithm.

Although the algorithm presented in this chapter assumes a single input, single
ouput (SISO) plant, it can easily be extended to the multiple input-output (MIMO)

18

)"

' ' '-*

plant [Ref. 7: pp. 25-27]. Additionally, we assume our plant to be causal.
Furthermore, because the problem of order determination is necessarily complicated, it
%ill be assumed that the order of the plant is always known to the designer.

19 q

U'

a--

III. SYSTOLIC ARRAY IMPLEMENTATION

A. IMPLEMENTATION OF ALGORITHM
We now turn our attention to the solution of (2.22) using systolic arrays. In

particular, (2.22) is suited for parallel computation. As described in [Ref. 2: pp. 23 -

25], the identification problem can be reconstructed into a set of linear equations as

Rk 0(+I)N - '3k1 (3.1)

with Rk in upper triangular form. We see here that 0 (k+ 1)N can be computed by using

two processors in cascade: one to compute Rk and Pk1 , and the second to compute 0
from (3.1). Note that implicit matrix inversion is not necessary since Rk is in upper

triangular form.

As discussed in the previous chapter, we initialize the array at the beginning of

each time block to crI (left half) and r0 kN (right half). This has the effect of

initializing the Rk matrix in (3.1) to an upper triangular form. Then, at each discrete

time n, an array of data (p(n) and y(n) will be passed to the systolic array. The task of
the array is to "re-triangularize" the data at each clock pulse, so the matrix remains in

the form prescribed by (3.1). It is then a simple matter to solve for 0 (k+I)N* This

technique is based on QR decomposition as the means to triangularize the data array.

The value of eo relates to the confidence we have in the initial estimates. The

larger the value of a,, the lower our confidence. Equations (2.18) - (2.22) illustrate the

role that %o plays.

B. GIVENS ROTATION

An attractive and easily implemented method of triangularization by QR
decomposition is provided by the Givens rotations. The reason for this choice is the

fact that the Givens rotation operates only on adjacent data, making it suitable for

systolic array implementation. The object is to combine two adjacent rows in the

matrix, forcing zeros in the appropriate positions so to obtain an upper triangular data

matrix. Figure 3.1 shows an example of triangularization by successive Givens

rotations.

20

I 1

1 I

r -, 1 r! '" i 1
alli a12 a1£l 1? a13 al a, a 13 al a12 'L13

1£21 '22 '23 0~ '22 a231 0 'L22 aL23 - 0 £L22 £23

Figure 3.1 Example of Row Operations.

The underlying idea for this scheme is that any two rows of elements ai,.. ai,

a, + I., ai + In may be considered as a sequence of vectors (x,y) in A 2 as in Figure 3.2.

y

i+l,j

Figure 3.2 Vectors in A 2.

If we rotate a vector (a.,, , a.+ ,I) by an angle a so to make it parallel to the x axis, then

the y value (a,+,,,) becomes zero. This same rotation a is then applied to the

remaining (x,y) vectors in the affected rows (in this case, rows i, i+ 1) to ensure

algebraic equality. Next, the sequence of rotations is repeated for the remaining pairs
of rows (i.e. rows i+l, i+2; i+2, i+3; ...) in order to force zeros in the correct

locations that leave an upper triangular matrix.

21

~4 W ~ W ' ~ *• 544-U is ** •. . . ' s dV

-n h | .g... u-

Recal that the data matrix is initialized to an upper triangular form (%I). Then,

as we take samples from the signals in the plant, new values of (P(t) and ytt) are added

to the matrix. By a sequence of Givens rotations, we can transform it into an upper
triangular matrix. An example set of rotations is shown in Figure 3.3, where the

ali a12 a13 0 a22 a23

0 a22 a23 0 0 a'

0 0 a33 0 0 0

Figure 3.3 Example of Givens Rotations.

operations performed by the systolic array at each clock pulse are illustrated. This is

repeated until t - kN (i.e. at the end of the time block), at which time the parameters

0 are solved for, the matrix is reinitialized, and the process is repeated.

The basis of the Givens rotation is the matrix

I 0 0

Q(p,q) - 0 r(p,q) 0 (3.2)
0 0 12

associated to each pair of indexes p,q e (l,n + 1), with I1 and 12 being identity matrices

of dimension (q-2) x (q-2) and (n+ I-q) x (n+ l-q) respectively, and r is a 2 x 2 matrix

of the form

q c(pq) s(p'q) (3.3)
~p,q) - s(p,q) c(p,q)

The matrix Q has the property that it affects only two rows at a time, i.e. rows q and

q-i. Application of the transformation Q(p,q) to any matrix A of appropriate

dimension yields

22

Ir

Q(p,q)A x 1 x (3.4)
X 0 X 4-

X X X '

,R

p

provided c(p,q) and s(p,q) in (3.3) are such that

c(p,q) aq.jp + s(p,q) aqp - I

(3.5)
c(p,q) aqp - s(p,4) aqj.p 0

In Figure 3.3, application of the Givens rotation Q(3,4)Q(2,3)Q(I,2) to the left

matrix results in the rotated matrix shown on the right. We see that to perform Givens

rotations, we must be able to calculate addition, subtraction, multiplication, division,

and squares. Next, we will see how to perform the rotations, by using add and shift

operations only.

C. CORDIC TECHNIQUE

The CORDIC (COordinate Rotation Digital Computer) technique [Ref. 8: pp.

162-165) is particularly attractive in fixed point arithmetic for generating different types

of trigonometric functions. The principle involved is to rotate a vector (x,y) through

an angle u by a series of "properly quantized" angular steps. The single rotations of

the vector (x, y) are computed at each step by a combination of simple add, subtract,

and shift operations.

Consider again a vector in the plane as in Figure 3.2. The vector is represented

by its x and y components. Rotating the vector through any angle 6 leaves us with -.

new rotated coordinates

x- x cos6 . y sin (3.6)
y - y cos 6 T- x sin 6

where the top sign refers a clockwise rotation.

23

In the CORDIC technique, the rotation is performed in a sequence of angular

steps (0i, such that the sum of them approaches 6. The w 's can be positive or

negative, so

0) (0 h - n (3.7)

If we define 1 -I, then we can express 6 as

6 = yio. (3.8)

The choice of the angles coi is determined on the basis of computational convenience.

In particular, choose

0)i = tan" (2-') i - 0,1 (3.9)

and consider a single rotation by an angle coi. By applying (3.6) and dividing by cos (o.

we obtain ''

,S

x
y x y taneCi.= x(+0 .

cos oi
(3.10)

-= Yi q: x tan oi Yi + I5
cos o

The factors xi'i'cos W i and yi','cos woi are the rotated components of the vector (x,y).

Note that the new vector is not only rotated, but also scaled by a factor I/cos ci.

Now, combining (3.7) (or (3.8)), (3.9) and (3.10) we can define a recursion

x 2"i , x., + yliyi2'i - x-

1+1 1ajYi+1 - 4- - y -+ya - (3.11)Yi+i I Yr 1 l " Yi -- ixi2"i = kY"

for the rotation by an angle ypico. In binary arithmetic this can be implemented with

simple shift and add operations. Figure 3.4 illustrates a typical system for the

determination of yi.

24 "p

-,-
.5

I., V. % - -% % % - •. , ,* - '=, jw , ..) '* -,p' ' . r € a(p'.ef.'.../=jr V_ ' t a-'. k=P . d''-a.r. v'-,jta3

+, %
13

I"

logic7

Figure 3.4 General Block Diagram of CORDIC Computation.

We can easily compute values of w i = 0,1,2,... and the corresponding scaling

factor ki as given in Table 1.
For purposes of this research, we want to rotate an initial vector until its y value r

is equal to zero. The algebraic sum of the sequence of predetermined rotations will
give us the angle 6 that the vector was rotated through. These rotations can be

I.
encoded into x binary sequence y that identifies the rotations performed. This

sequence of rotations can then be passed to the remaining vectors in the affected rows.
Figure 3.5 illustrates a series of rotations for an arbitrary vector which we desire to

rotate by 300. Note that in the figure, the desired angular value is approached quickly,

because ci decreases by approximately half during each step. The y sequence in the

figure would be (+ 1, - 1, + 1, - 1, + 1,+ 1, - 1, + 1. - 1,+ - 1).

In an ideal case as just presented, the value of IYl decreases during each step.
However, this may not always be the case. For example, consider the vector

25
S.

$

- - .-- -. - -- 4.
.. ~ % ~ - - p - . . p .

TABLE 1

THE BINARY CORDIC CONSTANTS

i 2 --Oi ki

(degrees)

0 1.0000000000 45.00000000 1.4142135

1 0.5000000000 26.56505124 1.581138826

2 0.2500000000 14.03624340 1.629800596

3 0.1250000000 7.12501632 1.642484060

4 0.0625000000 3.57633432 1.645688908

5 0.0312500000 1.78991064 1.646492240

6 0.0156250000 0.89517384 1.646639215

7 0.0078125000 0.44761428 1.646743467

8 0.0039062500 0.22381056 1.646756030

0S 1 2'

.

! S
°

Figure 3.5 Set of CORDIC Rotations.

(x,y) - (5,1) and a - 11.3. The first rotation in the CORDIC algorithm (see Table

i) would be -45": this gives us a rotated vector (x.y) - (4.2, -2.8) and a - -33.7 °.

Note that the value of lyl has actually increased. To make the algorithm more

efficient, we modify the sequence y to include the value zero. Whenever a rotation
'

causes IYI to increase, we do not perform it, and we set the corresponding y. to zero.

261
'~ - ' ~ M~~7~VZ~~V~l .~ PA %

Then we continue on with the next rotation value and repeat the process. For the

example just cited, the next value to be tried would be 26.6 ° .

A simple algorithm to perform the CORDIC rotations can be seen in Figure 3.6.

INITIALIZE: if x > 0 then x0 = x,0 = y

else x. -x, Yo -y

ify > 0theny 0 = +1

else yo = -

for i := 0 to N - I do (* number of iterations *)

if Yi - yi2"ixi > yi then (* lYl increases *)

xi+ 1 : xi

3*i+ I = yi
yi+ 1 :0

else

X X + y.2-'V.-i+1 : i i i
Yi+l '1 i i2"x

ify" > 0 then yi+ 1 := +1

else Yi+: -

end for;

end.

Figure 3.6 Algorithm for CORDIC Rotations.

D. SYSTOLIC ARRAYS

1. General

We now examine the parallel structure that will be used to solve the least

squares algorithm described above. We desire a structure that accepts a sequence of

regression vectors p(n) and signal y(n) as input and then outputs the estimate for 0.

S

27

%.* ~* ,% * * i

VIWWWWWRVV r IJ -PV -ULdVWVVbl 1A 1-k _Z IVrMXr

Specifically, we are interested in a high performance parallel strucuture that can be

implemented directly as a hardware device in order to deliver maximum throughput.

Systolic arrays represent a structure suitable for these characteristics.

The key to inexpensive implementation is simple and regular interconnections.

Additionally, we want to allow the computations to proceed concurrently with the

input, in order to maximize the throughput. This is known as pipelining. [Ref. 3: p.

2571

01 Wt 02M0 t,() y t)

Figure 3.7 Systolic Array.

A systolic array meets these requirements. Figure 3.7 shows a typical system.

As noted earlier, the array is simply a network of processors that are regularly

connected. The data is continuously "pumped" through this structure, thereby

minimizing overall execution time, since all the processors work in parallel.

It was shown that two processors would be necessary to solve (3.1). Previously

used configurations have consisted of a triangular array (as in Figure 3.7) to compute

28

the upper triangular matrix, and a linear array to solve the system of equations. Figure

3.8 shows the typical design for the case where d (dimension) = 4. This thesis

discusses an alternative configuration in which the linear section is replaced by a

second triangular section identical to the first one. This new design is discussed later in

this chapter. Both designs use a single clock signal to control operations. We will now

review the structures of the triangular and linear sections before continuing on to

discuss the alternative design.

2. Triangular Array

The triangular systolic array performs the rotations as described in the section

on the CORDIC technique. The processors work simultaneously at each clock pulse.

The data regression vector (p(t) and output signal y(t) is input to the top of the array,

and rotations are calculated at each clock cycle.

The triangular array consists of two types of cells: edge (or boundary) cells

and internal cells. The edge cells are represented by the circles in Figure 3.7 or 3.8; the

boundary cells are the squares. Figure 3.9 defines the operations of these cells. The

edge cells compute the rotation vector y, which consists of a sequence of ± 1 or 0 as

discussed previously. This vector y is then passed to the internal cell on its right. The

internal cell then rotates its (x,y) vector by the value specified by y. These operations

are performed down the length of the affected rows.

Each cell of the triangular array stores an element of the upper triangular

matrix R(n) from Equation (3.1), and it is initialized to zero for internal cells and to

%1 for the edge cells. Then, each row of cells in the array is used to combine one row
of the stored matrix with the data received from the above cells. As discussed

previously, the array maintains its upper triangular form throughout the computations.

A delay of one clock cycle per cell is incurred when passing the rotation

parameters along a row. Therefore, it is necessary to "skew" the input data as seen in

Figure 3.8, so that the input data interacts properly with the previously stored

triangular matrix. Because the cells are all operating simultaneously, the data in the

system at any time t consists of values from (2n) different matrices. Figure 3.10

demonstrates this for a system with n= 3. In the figure, we can see that at time (t+ 5),

there are also values present from the five previous matrices (i.e. t+4, t+3,...,t). In

order to get all the cells in the array to a similar time state, the array would have to be

clocked an additional 2n-l (five) cycles, feeding zeros as input where necessary. At the

completion, all cells will be at the same time (t+ 5).

29

051 042 #33 024 Y I

041 322 #23 #14

4I I1 4i i.

031 022 #13

0: ' : ** * '
021 #12

#11 * * * '

* !a

a''

: ,.. g

Triangular Systolic

Array , Linear Systolic

Airmy

Figure 3.8 Systolic Array Implementation for Parameter Estimation: Old Design.

30

EDGE CELL
X

~Z' Is computed recursively from• . ou zl~ i- "1 *7iil Y1

Sout1 if Y > a

71 9 if yi a e or the rotation
M would increase jyj

(t~l) - if Yj < a '

INTERNAL CELL

X X' is computed recursively from

4n~~ ~~ * uY~ . 1 *712 ii
'Yin1 y' is computed recursively from

Yil W Y -"0 ilxi

(over the sequence yi)

(t) (t+l) 1 out - n

5%

Figure 3.9 Definition of Cell Operations for Triangular Section.

Note that at the same time the triangularization process is being carried out,

the column vector Pkl is also being computed by the right side column of internal cells

using y(n) as its input. At the end of the triangularization period (N), we are ready to

solve for 0 k+ I)N" The data in this triangular array is clocked out to the next array %

section that will compute the parameters.

3. Linear Array

The linear systolic array has been used in previous implementations to solve

for the estimated parameters. The linear section consists of one boundary cell and

(d-1) internal cells as seen in Figure 3.8. The operation of the cells as they compute

the parameters are shown in Figure 3.11. Note that the cells are different from those

in the triangular array, increasing to four the number of unique cells necessary in the
combined system.

A

31

do

#s(t+S) (t+ 2)
rtI)

Y, (t).

01(t-2) 2 t)) * *M

01 (tl • 2 W Fal

0~ 1M

(D- I F -l - @l

33 b 3

.1. 1. ".

51a El @F
OFww1 I Io

EI G

Figure 3.10 Data Flow in Triangular Section. -.

32

C~\mmm
WW%

_ " - , ', . ,' .'- -' " ." .*#- ' " " " ' - "t
' '

:: i -

a..

e, bi -Z 1 (n) Z (n+1) =Z 1 (n) + &,j el

'I

Figure 3.11 Definition of Cell Operations for Linear Section.

It is shown in [Ref. 2: p. 361 that the time required to solve for 0 using the
linear array is equal to 2d. At the end of that period, the parameters are used as initial
values for the triangular array, and the triangular section again commences operation.

We now turn our attention to the replacement of the linear section by a
second triangular system, and discuss the differences between the two designs.

4. The Use of a Second Triangular Array as the Solution Section
An alternative implementation can be obtained by solving for 0 as shown in

Figure 3.12. In this implementation, at the end of the triangularization period, the
data is passed from the first triangular section to the second triangular section in a

reversed fashion. The second array performs the same type of operations as the first;
therefore the cells are identical.

The key to using another triangular section is that, by proper combinations of
rows, we can force zeros into all elements of a given row but one, so that we can solve
for each of the parameters. Also, the fact that orthogonal operations are used makes it

more robust in the presence of numerical errors.
To see how this works, consider an arbitrary set of equations in upper

triangular form as in Equation (3.12). Now, x3 is simply solved as b3,a33. To solve for
x2, we can force a,, to zero by a linear combination of rows two and three. We know

33

,J

Triangular Systolic

Array

* i

Tr glar

C=delay units of ,..J.

one clock cycle..

Figure 3.12 Systolic Array Implementation for Parameter Estimation: New Design.

-%

*.--S

a11x1 + a12x2 + a13x3 = bI

Ox1 + a22x2 + a23x3 - b2 (3.12)

OxI + Ox2 + a 33x 3 -b 3

this can be easily accomplished by Givens rotations. Then x2 is found to be b2 'a22 .

Similarly, by row operations on rows 19 2. and 3 we can make a 2 = a13 - 0 in row

one. Again, solving for x! is a simple operation: bl:a1 l. These type of operations are

exactly what the triangular array was designed to do.

Figure 3.13 illustrates these operations in matrix format. Note that the array

is initialized to all zeros here, whereas the first triangular section is initialized to a00k

and aol.

oo I I ... H/OO-6 6-0 -/O- -o® -0- /° -X 1- -"
00 000 0 m0 OX X

0 0] 1000 000 001LO i LO j ooi LOO
1, ,I,1,..

compute 03 compute 02 compute 01

Figure 3.13 Solution of System of Equations.

To see how the system operates, recall the first triangular array at time N.

Now we must feed the data down into the second triangular section in an appropriate

manner so that we can solve for the parameters. The same delay (one clock cycle per

cell) in propagation of data applies to this triangular section as it does in the first ..

section. Hence, we must carefully choose when to sample the array in order to get the

correct values with which to calculate the solution.

Figure 3.14 shows the data flow for a simple system where d = 3. The input

data is skewed as it was in the triangular section. It can be seen that the values a33, ,-

a.,,, and a11 are available at times N + 1, N+ 4, and N + 7 respectively. Similarly,

35

N"

• • b 1

a13 a 22 0 all

13 0 0 4

N -WE,

OWl OWN+G

N+1

I,

N+3
ED N.?

ODO'rp OWr

Figure 3.14 Data Flow Through Second Triangular Array.

36

a.v

values b 3, b2, and bI are found at times N+4, N+ 6, and N+ 8. In general, for any

size system n, the coefficients ai and outputs b. are available as seen in Table 2. Note

from the figure that the coefficients are "picked off' from the edge cells at the

appropriate times, while the outputs are found in the rightmost set of internal cells.

TABLE 2

TIMES OF AVAILABILITY OF DATA

coefficient time available
a N+l

nn
a n-1.n. 1 N + 4

an. 2,n.2 N + 7

b n N +- (n +-l

b n-1 N + (n + 3)

bn. 2 N + (n + 5)

This new design operates slower than the linear system seen in [Ref 2: p. 36).

The time to solve for 0 in this design is equal to the time until bI appears, which is

equal to (3n. 1). This compares to 2n (or 2d) in previous implementations; hence, n-I

more clock cycles are required.

On the other hand, simplification is gained in the manufacturing process since

the number of unique cells is reduced. Additionally, use of the CORDIC rotation

technique allows us to use simpler processors. The tradeoffs to be considered are

simplicity (cost) versus speed.

37

er

',p ',2" , -- *,-'-".-. .__-',". . % . . -".",." -- . .. ", "." - " -:- ?..::-".", --- :. - --. "'5' -:..','---',. ".?

IV. SYSTOLIC ARRAY MODELING

A. GENERAL

1. System Equations

We now study a particular "unknown" system and the performance of the

systolic array in identifying its parameters. We will simulate a system both with and

without noise present. Additionally, we compare the results obtained by using floating

point versus fixed point arithmetic.

For purposes of the simulation, consider a plant with discrete time transfer

function

1.3z
2

H(z) = z0.) (4.1)H~z) = (z-0.5)3

which corresponds to the linear difference equation

y(t) - 1.5y(t-l) + 0.75y(t-2) - 0.125y(t-3) = 1.3u(t-l) (4.2)

In particular, let the input sequence be

u(t) = sin(3nt/10) + sin(3nt/5) + sin(3nt/2) + sin(9nt/5) (4.3)

The dimension of the parameter vector is four, defined as 0 = [-1.5, 0.75, -0.125, 1.3].

In the parameter estimation problem, these values are assumed to be unknown. The

input is "sufficiently rich' in frequency (minimum of n sinusoids) to excite all modes of

the system [Ref. 1: p. 741. Results of the simulations are discussed in the following

sections.

2. Choice of Initial Values

For the recursive agorithm, recall that we need to initialize the systolic array

with a parameter estimate vaO(0) and c0I. The value of co, which is related to the

confidence in the initial estimate as discussed in Chapter III, is chosen to be one for all

simulations. If some information about 0(0) is available, it should be used when

38

.-- ' . ,, . ,...,",,.r,.¢T,'L,,,,, €c-.,"- .:"--z-% , -"-.: .'€..-'L,'-"- '. -"-%-..-'- -'. '.,."- .. .,, .,,".,- .,:..-.- .,,-,,,,,.','...',".- ,,- .-.-- ,'_-"-. ' . - .

determining appropriate initial conditions. In the absence of any prior knowledge of 0.
we choose 0(0) = 0.

3. Choice of Block Length

We have chosen four different block lengths during the simulation studies:

N = 3, 5, 10, 15. It will be seen in the noiseless case that the parameters exhibit the
fastest rate of convergence when N = 5. However, when noise is present, there is a

tradeoff: the system is more sensitive to disturbances when the block length is shorter.

This is because a longer time block provides for more time averaging, thus attenuating

the effkcts of noise. Therefore, with more samples available, disturbances have a lesser
effect on the estimates. Hence, we must make an informed decision about what trait is

most important in a specific application.

4. Fixed Point versus Floating Point

In the sections that follow, we also compare the performances obtained when
using floating point processors or fixed point processors. Fixed point arithmetic

operations are performed using finite registers and simple shift operations. Therefore,
they are simpler to implement than floating point operations. Additionally, floating

point operations in general require longer registers (exponent and mantissa) tor%

represent numerical values, which might add complexity to the processor. Hence, the

simplicity of fixed point arithmetic is desired.

The problem to be solved in the fixed point case is how to convert the input
data values, which we normally expect to be floating point, into fixed point values.

The answer, of course, is to appropriately scale all numbers so that they stay within the

limits of the fixed registers. This task would be assigned to the Analog/Digital (A, D)

converter, and the scale factor used would be in large part dependent on the range of

values of the discrete plant samples.

B. SYSTEMS WITHOUT NOISE

The system under consideration was first modeled in an ideal environment

without noise to verify convergence of parameters. Figures 4.1 through 4.8 display the

results of these simulations. In the figures, the estimated parameters (Oi, 02, 03, 04)
are plotted along the vertical axis, and the block number is plotted along the horizontal

axis. Block number simply indicates the number of blocks that have been completed,

where N identifies the block size. Specific results for the floating point and fixed point

systems are discussed below.

39

p.!
• ",t, '; .. .:z-' ',' ,".... .-.,..,..,',.,,.'.,'.:.. ,.'- '-, ," " . : 7. , ";";-,' " - ,'." - . -"¢ ," " , .' , ., -- .

-o

400

UU

in

g-'T -6 0 *0- 1
S~aJZ VH~dU3,LVIJLz

Figre4. Foain Pin, itou Nis, 5

fe-,i- f fl r 2

D-

0

-)-6

i! z
* cD%

• --,

° : ,0

Figure 4.3 Floating Point, Without Noise, N = 10. i

-4 .-4d

z

C

SZIEILZNVZIVd (II,VII$LSa

Figure 4.4 Floating Point, Without Noise, N f 15._

43

S4

1. Results Using Floating Point Arithmetic

Figures 4.1 through 4.4 show the floating point results for block lengths of

N = 3, 5, 10, and 15 respectively. In order to evaluate and compare the relative rates

of convergence, we estimate (by visual inspection) in each case where the parameters

appear to have converged to their correct values. These values are tabulated in

Table 3. It can be seen that with N = 5, the least number of clock cycles were

required. Therefore, in this particular case, we should choose a block length of five.

TABLE 3

TIME TO CONVERGENCE
(NOISELESS CASE)

BLOCK L.ENGTH BLOCK NO. TOTAL
N AT CONVERGENCE CYCLES

3 16 48

5 6 30

10 4 40

15 3.5 52

2. Results Using Fixed Point Arithmetic

The results for the fixed point system are shown in Figures 4.5 through 4.8.

Note that the parameters converge just as rapidly as they did in the floating point

implementation. (The simulations were run on an IBM 3033 mainframe, in which

there are 31 bits available for an integer number.) This indicates that the systolic array
with fixed point processors performs as well as the floating point system. This is a

distinct advantage when we consider the simplicity of fixed point processors as

discussed previously.

C. SYSTEM WITH NOISE

The system was next modeled with noise present. The noise term v(t) is a

sequence of independent random variables identically distributed with zero mean (as

white noise). We use a variance of 0.5 for these noise random variables. The noise is

added to both the incoming signal u(t) and measured output y(t), as would be expected

in a real system. Figure 4.9 illustrates these signals both with and without noise.

44 1
0 4

~ -% ~ S j.U*~~ *~,* p*U * ~ ~***~*%~*~ .*5 ~ ~ . 5S ~ ~ % * 5.~ ,~..

................. ~ 'v~TuJv~v'Tww.-. ~-j-w-j---~-'

I,

-. 0
C,, 5,.

Co
C~J

Co

C~J
p

c.~J
$

0

Co

CO 0

* -~ I
C\1~

* 0

Co .1'

F.
CO

"S

C%1 '9

'S

a o go-
~aajawvav~ Q~LYWLLS~

Figure 4.5 Fixed Point, Without Noise, N = 3.
S

45 1
S.

5'.

(S. V~ ~'~4(.S.S. ~~#'S#S. 'S 5 'S 'S P

N

LO

z

0

(.- 1

co.

; 'a.

SH*3V~ aa',IJ~

, -0 ...
' r 'oo g'o- ..'

S Iq,:tVNIVd u(II LILSat'

Figure 4.6 Fixed Point, Without Noise, N - 5.

46

I

,. ~ -~a~.. .

CO

z

U

co

Suaj2IwYUvd Q119VIIIS3

Figure 4.7 Fixed Point. Without Noise, N -10.

471

co

Figure 4.8 Fixed Point, Without Noise, N =15.

48

T 1 1 E

...

o', °.

0 5 10 15 20 25 30 35 40 45

TIME

Figure 4.9a Input and Output Signals Without Noise Present. 'a

49.

a..

. -. .
o°o 10 1 0 5 3 o 0 4

." ' a-

- :-

-Figure 4.9b Input and Output Signals With Noise Present.

49

- , ,a . .L. . , .. a. *a ' . L n , . V,,W ~ a. .~a ~

1. Results Using Floating Point Arithmetic

Figures 4.10 through 4.13 display the results for the four different block

lengths. With N = 3, noise causes the parameters to vary considerably. When N = 5

or 10, disturbances are less likely to affect the parameters. When block length is equal

to 10, the parameters have converged reasonably well within three blocks (or a total of

30 cycles). For N = 15, we see that the parameters are least affected by the noise, as

expected. Here we find the relative convergence time is about three blocks, or 45

cycles.

2. Results Using Fixed Point Arithmetic

The results for fixed point implementation are shown in Figures 4.14 through

4.17. Again we note that the' exhibit the same performance as in the floating point

cases. Effects of block length are the same as noted previously.

50

0

c'J

-z

* coJ

T0 9'0- 1 -

Figure 4.10 Floating Point, With Noise, N 3.

%IWI

w~l fi. y 7 M

-j' V V

)cv4

U13

9*0 0 9*0

saaiayuvd nywus

Figue 4.t IFloaingPoin, Wth Nois. N'- 5

524

- - - - -

Cv

C.,1

1€ 91TI 20 0 910- T-

Figure ,4.12 Floating Point, With Noise, N -"10.

53

-..

-% ,-

0r)

VV

544

C14

C~JJ

1~ 0* *- T

SH3JKVH~ (I91VIIJo

55'

* 0 0 - 1- 1.~. ~ 72 J°ulwvv (IIVNJ

a

-o-

Figure 4.15 Fi e o nt ih N os ,N 5

* IP-

z

* Q

S1
•

. %

+ +'+ +'oo +'o.-
.

S 2LL II Vd UUVL+ S3 S

Figure 4.15 Fixed Point, With Noise, N - 5.
?.

56

'

Sq

° :1

* U

j%.r

9*0 0 90,- 1 0J gIIc' 0 c'- I

S J3.LJNVZIVd (Q3UVIIILSa

Figure 4.16 Fixed Point, With Noise, N = 10.

57

U-.

'5,5

cvi

44

co

6q

1 9* 0 90- 0

SHHJZ VZ~v all~vINli~s

Figue 4.7 Fxed oint Wih Nose, 15

58.

NQ'

V. CONCLUSIONS

The estimation of parameters using a parallel structure has been described in the

preceding chapters. In this chapter, we discuss tradeoffs, advantages, and

disadvantages of the various systems we have investigated.
Several possible conditions have been simulated in order to investigate the

behavior of the parallel algorithm. We saw that the parameters converged well under
all conditions, even in the presence of noise. Use of block processing tends to average
out the effects of noise, perhaps at the slight expense of convergence rate.

A parallel algorithm suitable to hardware implementation has been presented in

this research. The main contribution which distinguishes this algorithm from others

available in the literature is the fact that we have replaced two different processors by
two identical ones. With previous designs, a total of four different computing cells

were required: two for the triangular section and two for the linear section. For the

new design, we see that we need only two types of cells. These are the edge and
boundary cells, whose operations were described in Chapter III. However, this new .,

system also needs more total cells. Specifically, it can be shown that an additional
l d(d+ 1) cells are necessary, where d = dimension of system. Even for a sixth order

system (d= 6), this requires only 21 additional cells. In a VLSI scheme, additional cells

are considered inexpensive.

The second triangular section is somewhat slower than the linear section. We

saw in Chapter III that (d-l) additional clock cycles were required to operate the

second triangular section.
The functions of the cells must also be considered. The use of the Givens

rotation by Equation (3.2) requires the use of a processor which can perform squaring

operations, obtain square roots, multiply, divide, and do simple add and subtracts. Use

of the CORDIC technique greatly simplifies the operations, in the sense that rotations
can be implemented by use of addition and shifts only. Note from Table I that after

rotation, the vector has increased in magnitude by the amount listed in the column k.

This is easily compensated for by performing a right shift (division by 2) every other

rotation or so.

59

- ' v,'N,'qW 'v,',.Z~,_', --,.' ,,.t,-.-., , -W,,;. ,...,..;. ,., ,.Q .,..< . , - ". ,,,," ,-'

Another important consideration is the use of fixed point versus floating point

arithmetic. We saw in the simulation that the simple fixed point processors perform

equally as well as floating point processors.

When the results of this thesis are considered, we see that a systolic array using

the CORDIC technique presents an attractive means of implementing the parallel

algorithm to identify unknown system parameters. This, in turn, leads to important

applications in adaptive control systems and real time identification problems.

p.

,._

.?

l..,

'%p.

I

P~~jnMLR1LWXRV~ -vxx wvvw..*~JW-0JV 7V RIGUt " b U h V.

APPENDIX
PROGRAMI LISTING FOR SYSTOLIC ARRAY SIMULATION

This program calculates the parameter estimates for a discrete time linasstm

It is written in Waterloo Pascal. In accordance with Pascal syntax rules, the size of the
arrays must be defined in the declarations. Hence, one must know the order of the
system to be modeled before attempting to use this program.

program systolic (input,output);

const
dimension = 4; plusone 2 5* (dimension is order of system *
~ammacount = 30; (n'ticipated max number of rotations *
timerstop = 15; (*used as index in main *

type
gamma .vector = record

pi': boolean;
scale .factor: real;
params: array (.0..gammacount.) of integer;
end;

gmma..array =array (.1. .dimension, l..plusone.) of gamma...ector;
theta..array =array ... :dimension.) of-real;
u...array = array (0.dimension, 1. .plusone.) of real;
a-..array = array (.1..dimension, 1..plusone. of real;

var
gamma: gamma..array; (*direction of rotations
gamma2: gammaarray; (*direction of rotations)
a: a-.array;
a2: a array;
thet a: the a...array;
u: u...array;
u2: u array
i~j ,k,blocKC*length,count indexs integer-
timer: integer; (timer variable ~
sigma: real;
c h: char;
hem: text;

rocedure initialize (var sigma: real; var block-length:integer);
var

i,j: integer;

begin
for i s- 1 to dimension do

for J:- 1 to plusone do
a2(.i,j.) := 0;

'S writein; writeinin);
'S writein ('Initia ize the systolic array');

.4 writein (m,'Initialize the systolic array')-
writeln ('Choose the value or sigma'). writen'
writeln (m,'Choose the value of sigma)writein(m);
readin (sigma)- writeln (sigma); writeln(m,sigma);
writeln;(writein(m);
writeln ('Now enter the initial estimates of');

61

-0 '0

'S S .r .i''S *~'.~' ~ ':c **' *.'S* *~* 'S* *~ -. :. ~ * ~ *~ -* 'S'.. ''S S tS~ ~ 10W ~ ~~ ''S' L

writeln m,'Now enter the initial estimates of');
writeln 'the vector theta in order requested'); writeln.
writeln m,'the vector theta in order requested'); writein(m);
for i := 1 to dimension dobegin

writeln ('Theta ,' = ')writeln (m,'Theta I i,' = 'i

readln (a(.i dimenson . writeln; writeln(m);writeln (a(.l dimension + I.iwriteln;
writeln (m,a(.i,dimension + I.J); writeln(m);

end;
writeln (Enter the block length desired');writeln (m,'Enter the block length desired');
readln (Slock length
writeln blocs length:4);writeln (m,bloik length:4);

for i :=. 1 to dimension do
for j := 1 to dimension do

i('j .)tO - := 0;
for i:= 1 to dimension do

begin
a(.i,i.) := sima * 1;
write (m,a(.i,aimension + 1.):9:4); (*write initial values*)
a(.i,dimension + 1.) := sigma * a(.i,dimension + 1.);
end;

i := 0;end*

Procedure reinitialize (sigma: real);
var

i,j: integer;
begin

for i := 1 to dimension do
for j:= 1 to plusone do

a2(.i,j) : 0
for i := 1 to dimension do

a (.i, plusone.) := sigma * theta (.i.);
for i := 1 to dimension do

for j := I to dimension do
a (.i,j) := O;

for i i= 1 to dimension do
a(.i,i.) := sigma * 1;

Procedure internal (xzreal; var y,yout:real; var gammain, gammaout:
gamma-vector);

(* This procedure performs the rotation on the x-y pair, given the
ama vector which contains the number and directions in which
o rotate. The new values of the x-y pair are passed out *)

var
i: integer;
oldx, oldy: real;

Procedure scale (var x,y: real; magfactor: real);
beginx:= x* magfactor;

62 %

% I

endY:= y * magfactor;

Function two (i:integer):real;
(* This function calculates the exponentiation of the integer 2 to

the power (-i) *)

var
n: integer;
r: real;

begin
r : 1;
if i =0 then two := 1
else for n i to i do

r := r * (1/2);
dtwo r;end;

begin
if amain.pi then

begin x:=-x; y:= -y; end;
old x := x; old_y := y;
i := 0;
while (,gammain.params(.i.) <> 9) and (i < gammacount) do

begin
if gamm'ain.params(.i.) <> 0 thenDegin

x old x + ganmain params H * tWOW * OldY;
y .= old-y - gammain.params(.i. * two i * old-x;
old x x; old_¥ := y;end--

end;
scale (x,y, gammain.scale_factor);

yout .= y; y := x;
gammaout L= gammain;end.

Procedure edge (x:real; var yt real; var gamma: gamma..vector);
1% (* This procedure builds the gamma vector based ufpon the values of

the x-v pair.tThe amma vector contains only the values -1, 0, 1,

+.4L

or 9. -1, ten the vector is to be rotated counterclockwise.
If +1 then it must be rotated clockwise. The value is set to
zero if the next rotation would cause the new absolute value of
y to be greater than the previous absolute value of y. This way,
we can prevent the rotation from taking place and cause the
values o converge quickly. The value of 9 is placed into the
gamma vector once a pre-determined lower limit of y is reached,
and it signals that no more rotations are to take place. *)

const
low_limit - le-6;

var
i : integer;
tempx, ?empy: real;

63

Function two (i:integer):real;
(* This function calculates the exponentiation of the integer

2 to the power(-i) *)

var
n: integer;
r: real;

begin
r 1;
if i = then two := 1
else for n i to i do

r := r * (1/2);
two := r;

end;

Procedure onerotation (x,y: real; var temp-x, temp-y: real);
(* This procedure is used to do a rotation on the x-y pair.

The input values of x and y are not changed, but the
rotated values are passed out as temp_x and tempy. *)

var
temp-gamma: integer;

begin
if y > low-limit then tempgamma 1
else temp-gamma := -1;
tempjc x + temp gamma * two (i)temp-y : y - temp-gamma * two(i) *Y;

end;

begin
i := 0;
if x < 0 then begin (* initialize if x <0)

x := -X; y :-y; gamma.pi true; end N
else gamma.pi := false;
gamma.scale factor := (* initialize scale factor *)
while (abs(y) > lowlimlt) and (i < gammacount) do

begin
onerotation (x,y,temp x, tempy);(* check to see what rotated)

(* values of x,y will be *)
while (abs(y) < abs(temp y)) and (i < gammacount) do

begin (* repeat this loop until new *)
gamma.params(.i.) := 0; (* y < old y
i i +1;
one rotation (x,y,tempx, tempy);
end;

if y > low limit then gamma.params(.i.) := 1 (*do CW rotation *)
else if y 7 -low_limit then gamma.params(.i.) := -1; (* CCW *) S
i 2 i + 1;
x temp x* y := temp-y; (*update the rotated values*) -V
if y > lo; limit then gamma.params(.i.) := 1
else if y Z -low limit then gamma.params(.i.) -1*
if i = 1 then gamma.scale factor:= i/sqrt(2) (* update scaling *)
else gamma.scalefactor:= gamma.scalefactor

end;(* wileosarctan(twoi-i)));end; (* while *) *•n frttos*
gamma.params(.i.) := 9; (end of rotations
y := x * gamma.scale factor; (* scale final values *)

end* y,141

64

begin (* main *)
reset (h, 'data text al');
rewrite(m, 'outfile text al');
initialize (sigma, blockjlength);
for timer :- 1 to timersop do

begin
for index 1 to block-length do

begin
for j 1 1 to dimension + 1 doread (h,u(.O,j.));
readln (h);
for k := 2 to 2 * dimension + 1 do

begin
for i := 1 to dimension do

begin
k -

if (i =j and (j <= dimension + 1) thenVegin ,
if i = j then

edge (u(.i-l,j.), a(.i,j.), gamma(.i,j.))
elseinternal (u(.i-l,j.), a(.i,j.), u .i .)

qamma .,j-1.), gamma(.i,j.));
end; C*if i < j *)

end; (* for i 1 to dimension *)
end; (* for k *)

end; (* for index *)

(* solve system *)

a2 i):a(dimension, dimension shift bottom of
• ,plusone., := a(.dimension, plusone.); a into a2

theta (.dimension.) := a2(.l,plusone.) / a2(.1,1.);
count := dimension - 1;
while count >= 1 do

begin
for := dimension downto 2 do (shift down a matrix *)

for k := 1 to plusone do (* and feed into u
a(.j,k.) := a(.j-l,k.);

for j := 1 to dimension do
u2(.O,j.) a(.dimension, plusone -

u2(.O,plusone.) := a(.dimension, plusone.); 'for k := 2 to 2* dimension + 1 do
begin
for i := 1 to dimension dobegin

bgif <= and (j <= dimension + 1) then

begin
if i = then

edge (u2(.i-l,j.), a2(.i,j.), gamma2(.i,j.))
else

internal (u2(.i-l,j.), a2(.ij.), u2(.i,j.),
gamma2(.i,j-i.), gamma2(.i,j.));

end; (*ifi<j *)
end(* for i 1 to dimension *)

end; (for k *)
theta (.count.) : a2 (.dimension - count + 1, plusone.) /

a2 (.dimension - count + 1, dimension - count + 1.);
count sz count - 1
end; (* while *)

for i := i to dimension do (* write out values
write (m, theta (.i.):9:4);

reinitialize (sigma);
end; (* or timer *)

end.

65

LP - --- L

LIST OF REFERENCES

1. Goodwin. G.C. and Sin, K.S., Adaptive Filtering, Prediction and Control, Prentice-
Hall, 1984.

2. Kim, Yong Hong, A Parallel Structure for On Line Identij7cation and Adaptive
Control, Masters Thesis, Naval Postgraduate School, Monterey, California.
March 1987.

3. Kung, H.T. and Leiserson. Charles E., "Systolic Arrays (for VLSI)," Sparse
Matrix Proceedings, SLAM, 1978. .

4. Stewart, G. W., Introduction to Matrix Computations, Academic Press. 1973.

5. Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, 1984.

6. Ljung, Lennart, and Siderstr~m, Torsten, Theory and Practice of Recursive
Identification, MIT Press, 1983.

7. Hsia, T.C., System Identification, Lexington Books, 1977.

8. Schmid, H., Decimal Computation, John Wiley and Sons, 1974.

.1

P,.%

%

-p

BIBLIOGRIAPHY

Anton, Howard, Elementary Linear Algebra, John Wiley & Sons, 19S4.

Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement Algorithm. to be
published, March 1986.

Jennings, Alan, Matrix Computation for Engineers and Scientists, John Wiley & Sons,
1977.
.Noble, Ben and Daniel, James W., Applied Linear 4!gebra, Prentice-Hall, 1977.

67

N 0.

-Sm

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Tcchnical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 939-43-5002

3. Prof. Roberto Cristi. Code 62Cx I
Department of Eiectrcal and Computer Engineering
Naval Postraduate School
Monterey, CA 93943-5002

4. Prof. Sherif Michael, Code 62Mi 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5002 .!

5. Major Richard Adams. Code 52Ad I
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93913-5002

6. Paul A. Willis 2
17120 Via Pasatiempo
San Lorenzo, CA 945S0

7. Mr. V. V. Saba I
717 Carlin Ct. %
Carmel, IN 46032 %

8. M r. Joseph Sm ulc wicz I , %

5172 Sabin Ave.
Fremont, CA 94536

9. Dr. K. Bromley,
Code 741t;OSC

. .,

San Diego, CA 92152 1

10. OP - 02
Undersea Warfare
W;ashington, D.C. 20350 1

68
L~al. %

xr~lrvxi m-W~j~lWTLWx Upr, " V P%,

%

6 % 1

%

,

-a-% a./. I

F. t'r F * 0

w% % % % %

